RIGID LIFELINES CONDITIONS OF USE AND WARNING STATEMENT

1. Read, understand, and follow the manual, assembly drawings, and warnings provided with your system before beginning installation.

2. This manual, and any other instructions, must be provided to the users of this equipment. The user must understand the equipment's proper use and limitations.

3. A fall event can result in serious injury or death. This equipment, when used properly, reduces the chances of those outcomes.

4. Always perform a hazard analysis before use that will identify impact hazards, swing hazards, or any other hazards that may exist. Address and correct all hazards before use.

5. Always have a written rescue plan that defines who will rescue a fallen worker, what equipment will be used, and optimum rescue response time. If the same system will be used for rescue, a minimum of a two-man system must be specified.

6. Follow all current requirements of ANSI Z359 (or CSA Z259 in Canada).

7. Each component and system must be employed and maintained in accordance with all OSHA and ANSI standards.

8. Per OSHA and ANSI (or CSA Z259 in Canada) requirements, designate a competent person who can fulfill obligations of all regulations.

9. Note the maximum number of users and weight capacities are listed on a label on the system. Exceeding the capacities listed on this label can result in serious injury or death.

10. Always check for overhead hazards, such as power lines, trees, overhead structures, or walls, before using or moving system.

11. Any component replacement, addition, or change to any portion of the system must be evaluated by a Qualified Person as defined by OSHA standards.

12. Never use this system for material handling.

13. Never use the system with scaffolding.

14. Never use the system alone without a monitor. Use the buddy system when using fall protection. The monitor, or “buddy,” does not need to be attached to the system, but just nearby supervising.

15. Consult with a qualified person for minimum fitness requirements for workers. Determination of minimum fitness levels of workers prior to use of system is by others.

16. For mobile systems—It is the responsibility of the user and their management’s Competent Person to determine that the system’s base is level, the masts are plumb, and that the entire, leveled system is stable before every use.

17. For movable track systems—Always use the system in work spaces that allow you to move the system’s runway as close as possible to the center of the work area.

18. Before each use, inspect the system for bent, broken, cracked, or missing components.

19. A competent person must thoroughly inspect the system annually and after each fall event.

20. There should never be any type of loading past the end stops for any reason.

21. When connecting track sections on runway systems, track splice and truss splice plates are required. For trussed track, splice joint centers must be within maximum 48 inches of the hanger support centers unless otherwise specified. For plain track, splice track centers must be within maximum18 inches of the hanger support centers unless otherwise specified.
22. Systems with flush clamp hangers do not require sway bracing. However, all systems mounted to the ceiling must be laterally and longitudinally braced with bracing provided by others.

23. If supplied, all drive systems are chain driven, and as a result, will experience some backlash in the drive assembly. Although backlash cannot be fully eliminated, it can be reduced by tightening the drive chain. Torque limiters, if supplied, require special attention. Most drive issues result from improper torque limiter adjustment or installation.

24. It is the customer’s responsibility to confirm that the system and components will work in and are acceptable for their specific application and environment.

25. For foundation-mounted systems, bracing is not required for non-seismic applications. However, if any sway is perceived as undesirable, lateral bracing can be installed to the system by others. To achieve desired rigidity for a specific application, Rigid Lifelines® recommends consulting a professional engineer in your area to satisfy all codes and ordinances. For foundation-mounted systems, chemical anchor bolts supplied by others are required and must provide approximately 7000-pound pull-out force. More accurate pull-out forces are available upon request.

26. Engineering of any attachment points must be done by others.

27. Component appearances and dimensions shown are approximate and subject to change without notice. All catalog dimensions are developed using standard components for the spans and capacities. Substitution of optional trolleys or other components will affect certain dimensions.

28. All Rigid Lifelines Anchor Track™ Systems meet or exceed OSHA and ANSI requirements.

29. Never load the track at an angle greater than specified in the system’s user manual.

30. Never use the system with the attachment point below the D-Ring of the harness.

31. Only the following self-retracting lanyard (SRL) design specifications are acceptable for use on Rigid Lifelines Anchor Track Systems:
 a) 900-pound maximum average arresting force (MAAF)
 b) 4.5 feet-per-second lock up speed
 c) Disk or drum braking mechanism
 d) Wire rope SRL’s can be used for indoor or outdoor applications
 e) Fabric or web SRL’s can be used only for indoor applications

32. The following energy-absorbing lanyards are not acceptable: rip-stitch packs, shock packs, or stretchable energy.

33. Choose the shortest length SRL that will allow the workers to perform their job function. The shortest length SRL will reduce total fall distance by reducing “cable cinching” on the internal SRL pulley. Fabric lanyards stretch under load. The longer the lanyard, the longer the stretch.

34. Never use metallic cables or metallic SRL’s around electrical power sources.

35. Only an ANSI (or CSA in Canada) full-body harness is acceptable for use on Rigid Lifelines Anchor Track Systems.

36. Never use body belts on this system.

37. Never add additional carabiners, D-Rings, shackles, or connecting hardware to this system.

38. On Traveling Bridge Anchor Track Systems, always position the bridge(s) directly overhead of worker(s) at all times.

39. If a boom is provided, never apply a lateral load at the boom tip.

40. Never deviate from the above unless you have written permission and authorization from Rigid Lifelines.
WARNING

Do not move the system while workers are still connected to it; doing so may result in serious injury or death.

Do not use the system on an incline; only use the system on surfaces that are firm and level. NEVER place the system near a ledge.

Follow the Inspection Checklists in this manual: the first checklist is to be reviewed before each use and the second checklist is for after a fall event and annual inspections.

NEVER EXCEED 10 DEGREES OFF-PLUMB (OFF-CENTER) LOADING.

USE THE CASTER BRAKES WHILE SYSTEM IS IN USE.

Ensure that caster brakes are making contact with the caster material for maximum effectiveness.

Store the system with caster brakes activated to prevent the system from rolling.

Push or pull the Adjustable-Height Rolling A-Frame system by hand only.

WARNING

WHILE IN USE, THE CASTER FRAME WIDTH MUST BE AT MAXIMUM DISTANCE TO PREVENT SYSTEM FROM FALLING OVER DURING A FALL EVENT.

WHILE IN USE, THE SUPPORT LEGS MUST BE AT MAXIMUM SPAN DISTANCE. NO CANTILEVER LOADING IS ALLOWED ON THIS SYSTEM.
TABLE OF CONTENTS

CONDITIONS OF USE AND WARNINGS STATEMENT .. 2-4

SYSTEM APPLICATIONS .. 6

STANDARDS AND COMPLIANCE ... 6

REQUIRED TRAINING ... 6

ASSEMBLY INSTRUCTIONS .. 7

1. Equipment Needed for Assembly ... 7

2. Inventory .. 7

3. Attaching the Caster Brakes to the Caster Assemblies .. 8

4. Attaching the Swivel Locks to the Caster Assemblies .. 9

5. Attaching the Caster Assemblies to the Caster Frame Assemblies 9-10

6. Attaching the Hanger Assemblies to the I-Beam Weldment ... 10-11

7. Attaching the Support Legs to the I-Beam Weldment .. 11-12

8. Attaching the Caster Frame Assemblies to the Support Legs .. 12-13

9. Attaching the Track to the I-Beam Weldment .. 13-14

10. Final Assembly .. 15-16

 Intermediate Bumper Installation (if Supplied) ... 17

SYSTEM HEIGHT ADJUSTMENT ... 18-20

CASTER FRAME WIDTH ADJUSTMENT ... 20-21

OPERATING INSTRUCTIONS ... 21

MAINTENANCE ... 22

LABELING .. 23

ADJUSTABLE-HEIGHT ROLLING A-FRAME INSPECTION CHECKLISTS 24

 Adjustable-Height Rolling A-Frame Anchor Track™ System ... 24

 Annual Anchor Track™ System .. 25

PRODUCT WARRANTY COVERAGE ... 26-27

SERVICE POLICY ... 27

ABOUT RIGID LIFELINES® .. BACK COVER
SYSTEM APPLICATIONS

The Adjustable-Height Rolling A-Frame Anchor Track™ System is used for fall protection applications. This fall protection system is labeled with maximum number of users and maximum arresting force; follow all limitations as noted on system label. Each user must attach to this system using a personal fall arrest system.

STANDARDS AND COMPLIANCE

Please refer to local, state, and federal (OSHA) requirements governing occupational safety for additional information regarding personal fall arrest systems. The Adjustable-Height Rolling A-Frame Anchor Track System meets or exceeds the requirements set forth in OSHA 1910, OSHA 1926, and ANSI Z359.

REQUIRED TRAINING

This system is intended to be used by people who are trained in its correct application and use. It is the responsibility of the users and the users’ management to assure that they are familiar with these instructions and are trained in the correct use and care of this equipment. Authorized users must also be aware of the operating characteristics, application limits, and the consequences of improper use, which can result in serious injury or death.

Every application of fall protection must be part of a comprehensive managed fall protection program. Each program must include, but is not limited to:

- Hazard analysis
- Authorized person training
- Competent person implementation
- Rescue procedures
- Rescue training

The above list is not a comprehensive list. Specific applications may need to include additional items, such as administrative controls or engineered controls. A Qualified Fall Protection Engineer or OSHA Qualified Person should review the comprehensive managed fall protection program to ensure that it is adequate for your specific application. For more information on how to set up a proper Fall Protection Program within your facility, follow ANSI Z359.2 Minimum Requirements for a Comprehensive Managed Fall Protection Program, which is available at: www.asse.org.
ASSEMBLY INSTRUCTIONS

1. Equipment Needed for Assembly
 a) This manual
 b) Applicable safety equipment for workers' use during assembly, such as hard hats, safety shoes, etc.
 c) A telescoping fork truck or crane; ensure that your equipment has a five-ton capacity and can reach the height of your system.
 d) Torque wrench
 e) Saw horses
 f) Assorted drift pins
 g) Lifting straps
 h) Measuring tape
 i) Permanent marker
 j) Eight-foot or taller step ladder (or man/scissor lift)
 k) A spacious, level area for assembly (ex: a parking lot)
 l) Wrench/Socket sizes: 3/4 inch, 15/16 inch, and 1-1/8 inch
 m) Assembly time: allow two workers approximately eight hours for assembly.
 n) Four six-inch by six-inch (or larger) wood blocks
 o) FAT-ASSEMBLY SHEET 1 OF 2, hereafter referred to as Adjustable-Height Rolling A-Frame Assembly Drawing, will be included as a separate document.
 p) FAT-ASSEMBLY SHEET 2 OF 2, hereafter referred to as Adjustable-Height Rolling A-Frame Label Placement Drawing, will be included as a separate document.
 q) The Anchor Trolley™ User Instruction Manual (Manual 103-0054), which is packaged with the Anchor Trolley, will be included as a separate document.

2. Inventory
 a) Open all bundles and confirm that all components are accounted for: see Building Materials Description located in the top right corner of the Adjustable-Height Rolling A-Frame Assembly Drawing. Note that the quantity of components in an assembly is multiplied by the number of the assemblies.
 b) Check for damage to components that may have occurred during shipping. Check the caster assemblies for potentially concealed damage.
3. Attaching the Caster Brakes to the Caster Assemblies

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through J

a) If you ordered pneumatic or dual-pneumatic casters, your casters ship with their caster brakes already attached. If you ordered polyurethane casters, follow steps b through j to attach the caster brakes. Refer to the caster brake assembly drawing below throughout the assembly process.

b) Cut the zip tie holding the swivel lock on the caster assembly. You will need the swivel lock for step "4. Attaching the Swivel Locks to the Caster Assemblies."

c) Using a 3/4-inch wrench and 3/4-inch socket and ratchet, unbolt the caster stud and remove the nut, bolt, washer, and caster.

NOTE: If the spacers fall out of the caster, reinsert them into the caster holes.

d) With the top of the brake shoe facing towards the caster assembly, insert the guide pin on the brake shoe into the brake slot on the caster assembly.

e) Using a screwdriver, slightly bend the brake shoe tab so that the brake shoe guide pin and brake shoe tab fit properly.

f) With the brake pedal tabs pointed away from the caster assembly, line up the hole on the brake pedal with the hole on the brake shoe. "On" and "Off" on the brake pedal tabs should be visible when the caster is mounted to the system.

g) Line up the caster holes with the brake shoe hole and brake pedal hole.

h) With the washer on the bolt-side of the caster assembly, reinsert the longer axle bolt through the brake pedal, brake shoe, and caster. Reapply axle nut at this time.

i) Using a 3/4-inch wrench and 3/4-inch socket and ratchet, tighten the caster nut until securely tightened.

j) Repeat steps b) through i) to install the remaining caster brakes.
4. Attaching the Swivel Locks to the Caster Assemblies

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through F

a) The swivel lock ships zip tied to the caster assembly for pneumatic, dual-pneumatic, and polyurethane casters. For polyurethane casters, you should have removed the swivel lock while installing the caster brakes.

b) Insert the pin on the swivel lock into the groove beneath the caster plate on the caster assembly.

c) Open the pin on the swivel lock by pulling and spinning the ring to fit into the groove at the end of the swivel lock.

d) Using two 3/4-inch bolts, washers, and nuts, bolt the swivel lock to the caster plate.

e) Using a 3/4-inch wrench and 3/4-inch socket and ratchet, tighten the swivel lock bolts per the chart located on the lower right corner of the Adjustable-Height Rolling A-Frame Assembly Drawing.

f) Repeat steps b) through e) to install the remaining swivel locks.

5. Attaching the Caster Assemblies to the Caster Frame Assemblies

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through E

a) Lay each caster frame assembly (1 and 2 in the Building Materials Description) on the ground with the studs facing up.

b) Per Detail “A,” place a caster assembly (3) on a caster frame assembly (1 or 2) so that the four studs extend up from the four holes in the caster assembly’s top plate.

c) Per Detail “A,” place a 1/2-inch flat washer (4), 1/2-inch lock washer (6), and 1/2-inch hex nut (5) on each stud so that the 1/2-inch lock washer (6) is between the 1/2-inch flat washer (4) and 1/2-inch hex nut (5). Torque all 1/2-inch wheel stud nuts (5) to 23 foot-pounds.

Detail “A” (Caster Assemblies to Caster Frame Assemblies)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Caster Frame Assembly</td>
</tr>
<tr>
<td>3</td>
<td>Caster Assembly</td>
</tr>
<tr>
<td>4</td>
<td>1/2-Inch Flat Washer</td>
</tr>
<tr>
<td>5</td>
<td>1/2-Inch Hex Nut</td>
</tr>
<tr>
<td>6</td>
<td>1/2-Inch Split Lock Washer</td>
</tr>
</tbody>
</table>

NOTE: Torque all 1/2-inch wheel stud nuts (A2) to 23 foot-pounds only.

NOTE: The flat washer (4), hex nut (5), and split lock washer (6) attach to a stud welded to the bottom of each caster frame assembly (1 and 2).
Repeat steps a) through c) to attach the remaining caster assemblies (3 in the Building Materials Description) to the caster frame assemblies (1 and 2 in the Building Materials Description).

After the caster brakes, swivel locks, and caster assemblies have been attached to the caster frame assemblies, test the caster brakes and swivel locks to ensure that they function properly.

6. Attaching the Hanger Assemblies to the I-Beam Weldment

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through H

Using saw horses, position the I-beam weldment (13 in Building Materials Description) so that the holes in the top of the I-beam weldment (13 in Building Materials Description) are facing up.

Per Detail “B,” remove the four end stop angles (17), two on each end, from the I-beam weldment (13) and all hardware (5, 6, and 18). The angles (17) and hardware (5, 6, and 18) will be reinstalled later.

NOTE: Hanger assemblies ship assembled. They consist of components 8 through 12 and 20 through 22 in the Building Materials Description.

Per Detail “B,” slide both hanger assemblies (8 through 12 and 20 through 22) onto the top of the I-beam weldment (13).

Per Detail “B,” align the holes of the I-beam hanger weldment (12) with the holes on top of the I-beam weldment (13). For easier installation, use the holes that allow for maximum span distance as shown in Detail "B."

Per Detail “B,” insert two hitch pins (23) through the aligned holes of the I-beam hanger weldment (12) and I-beam weldment (13). The hitch pins (23) must be installed on the inside of the hanger assembly (8 through 12 and 20 through 22) closest to the center of the I-beam weldment (13) and align vertically, meaning the hitch pins cannot be in the same row of holes.

Detail “B” (Hanger Assemblies and End Stop Angles to I-Beam Weldment)

NOTE: On systems with an overall width of 40 feet, item 18 is a 1/2-inch diameter by 2-1/2-inch long bolt.
f) Per Detail “B,” insert the attached linch pins (23) through the holes on the bottom of the hitch pins (23).

g) Repeat steps d) through f) to attach the remaining hanger assembly (8 through 12 and 20 through 22 in the Building Materials Description) to the I-beam weldment (13 in Building Materials Description).

h) Per Detail “B,” reinstall the four end stop angles (17), two on each end, to the I-beam weldment (13) and all hardware (5, 6, and 18) by aligning the holes in the end stop angles (17) with the holes in the side of the I-beam weldment (13), inserting 1/2-inch diameter by 2-inch long bolts (18), and securely tightening 1/2-inch split lock washers (6) and 1/2-inch hex nuts (5) to the bolts (18) so that the split lock washers (6) are between the end stop angles (17) and hex nuts (5).

NOTE: On systems with an overall width of 40 feet, item 18 is a 1/2-inch diameter by 2-1/2-inch long bolt.

7. Attaching the Support Legs to the I-Beam Weldment

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through I

NOTE: Before continuing, ensure that the support legs (7 in the Building Materials Description) are at minimum height and leave them at minimum height throughout the installation process. If the support legs are not at minimum height, follow steps c) through j) on page 18 to adjust each support leg to minimum height.

a) With the I-beam weldment (13) still on saw horses, as per Detail "B," slide the top of an outside support leg (longer leg with brackets welded on) into the right main leg connector hanger (9).

b) Per Detail “B,” align the top hole of the outside support leg with the hole in the right main leg connector hanger (9).

NOTE: Components 31, 32, and 33 are either 1/2-inch diameter or 3/4-inch diameter depending on the system size.

c) Per Detail “B,” insert a 1/2-inch or 3/4-inch diameter by 5-1/2-inch long bolt (31) through the aligned holes in the outside support leg and right main leg connector hanger (9).

NOTE: On systems with an overall width of 20 feet and a trolley-hook height of 20 feet, item 31 is a 3/4-inch diameter by 5-inch long bolt.

d) Per Detail “B,” securely tighten a 1/2-inch or 3/4-inch split lock washer (33) and 1/2-inch or 3/4-inch hex nut (32) to the bolt (31) so that the split lock washer (33) is between the outside support leg and hex nut (32).

e) Per Detail “B,” slide the top of an inside support leg (shorter leg) into the right brace leg hanger weldment (11).

f) Per Detail “B,” align the top hole of the inside support leg with the hole in the right brace leg hanger weldment (11).

g) Per Detail “B,” insert a 1/2-inch by 4-1/2-inch bolt (19) through the aligned holes in the inside support leg and right brace leg hanger weldment (11).

NOTE: On systems with an overall width of 25 feet, item 19 is a 1/2-inch diameter by 4-inch long bolt.
h) Per Detail “B,” securely tighten a 1/2-inch split lock washer (6) and 1/2-inch hex nut (5) to the bolt (19) so that the split lock washer (6) is between the inside support leg and hex nut (5).

i) Repeat steps a) through h) to attach the remaining support legs (7) to the I-beam weldment (13).

Detail “B” (Support Legs to I-Beam Weldment)

NOTE: On systems with an overall width of 25 feet, item 19 is a 1/2-inch diameter by 4-inch long bolt.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1/2-Inch Hex Nut</td>
</tr>
<tr>
<td>6</td>
<td>1/2-Inch Split Lock Washer</td>
</tr>
<tr>
<td>8</td>
<td>Main Leg Connector Hanger, Left</td>
</tr>
<tr>
<td>9</td>
<td>Main Leg Connector Hanger, Right</td>
</tr>
<tr>
<td>10</td>
<td>Brace Leg Hanger Weldment, Left</td>
</tr>
<tr>
<td>11</td>
<td>Brace Leg Hanger Weldment, Right</td>
</tr>
<tr>
<td>13</td>
<td>I-Beam Weldment</td>
</tr>
<tr>
<td>19</td>
<td>1/2-Inch by 4-1/2-Inch Hex Head Bolt</td>
</tr>
<tr>
<td>31</td>
<td>X/X-Inch by 5-1/2-Inch Hex Head Bolt</td>
</tr>
<tr>
<td>32</td>
<td>X/X-Inch Diameter Hex Nut</td>
</tr>
<tr>
<td>33</td>
<td>X/X-Inch Split Lock Washer</td>
</tr>
</tbody>
</table>

NOTE: Components 31, 32, and 33 are either 1/2-inch diameter or 3/4-inch diameter depending on the system size.

NOTE: On systems with an overall width of 20 feet and a trolley-hook height of 20 feet, item 31 is a 3/4-inch diameter by 5-inch long bolt.

8. Attaching the Caster Frame Assemblies to the Support Legs

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through L

a) Extend the caster frame assembly (1 or 2 in Building Materials Description) to maximum length by first removing the attached linch pin from the bottom of the hitch pin.

b) Then pull the inner caster frame tube until the last holes in the inner and outer caster frame tubes are aligned.

c) Reinsert the hitch pin through the aligned holes in the inner and outer caster frame tubes.

d) Reinsert the attached linch pin through the bottom of the hitch pin.

e) Repeat steps a) through d) to extend the remaining caster frame assembly (1 or 2 in Building Materials Description) to maximum length.

NOTE: Caster frame assemblies (1 or 2 in Building Materials Description) contain an assembled cable assembly inside the inner and outer caster frame assembly tubes to prevent overspreading of the caster frame assemblies. Do not remove this cable or any hardware attached to the cable assembly.

f) Feed a lifting strap under the I-beam weldment (13) so that the I-beam’s weight will be evenly distributed during lifting.
g) Attach the other end of the lifting strap to a crane or forklift, and use the crane or forklift to lift the system into the air.

NOTE: Ensure that the system is high enough in the air to allow both caster frame assemblies (1 and 2 in Building Materials Description) to fit under the support legs (7 in Building Materials Description) during the connection process.

h) Per Detail "C," align the middle holes of the caster frame sleeve with the holes at the bottom of the outer support leg bottom bracket.

```
Detail "C" (Caster Frame Assemblies to Support Legs)
```

![Diagram of Caster Frame Assemblies to Support Legs]

```
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Caster Frame Assembly</td>
</tr>
<tr>
<td>7</td>
<td>Support Leg</td>
</tr>
<tr>
<td>14</td>
<td>5/8-Inch by 4-1/2-Inch Hex Head Bolt</td>
</tr>
<tr>
<td>15</td>
<td>5/8-Inch Diameter Hex Nut</td>
</tr>
<tr>
<td>16</td>
<td>5/8-Inch Split Lock Washer</td>
</tr>
</tbody>
</table>
```

NOTE: On systems with an overall width of 15 feet and a trolley-hook height of 17 feet, item 14 is a 5/8-inch diameter by 5-inch long bolt.

i) Per Detail "C," insert a 5/8-inch by 4-1/2-inch bolt (14) through the aligned holes of the caster frame sleeve and the outer support leg bottom bracket.

NOTE: On systems with an overall width of 15 feet and a trolley-hook height of 17 feet, item 14 is a 5/8-inch diameter by 5-inch long bolt.

j) Per Detail "C," securely tighten a 5/8-inch split lock washer (16) and 5/8-inch hex nut (15) to the bolt (14) so that the split lock washer (16) is between the outer support leg bottom bracket and the hex nut (15).

k) Repeat steps h) through j) to attach the other end of the caster frame assembly (1 or 2 in Building Materials Description) to the support leg (7 in Building Materials Description).

l) Repeat steps h) through k) to attach the remaining caster frame assembly (1 or 2 in Building Materials Description) to the support leg (7 in Building Materials Description).

9. **Attaching the Track to the I-Beam Weldment**

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through M

a) Using a measuring tape and a permanent marker, measure and mark 18 inches in from each end of the track (24) for standard overhang. Also measure and mark your support spacing requirements. These locations are where the hanger brackets (27) should be installed on the track (24).

NOTE: 10 feet is the maximum support spacing for each one-person capacity track (eight feet for non-passable two-person capacity on one track). 18-inch overhang is standard. Refer to your Final Fabrication Drawing for correct overhang lengths and support spacing for your specific system.

b) Per Detail "E," slide all of the hanger brackets (27) onto the track (24) so that the welded top plate on the hanger bracket (27) is facing up away from the track (24).
c) Per Detail "E", slide each hanger bracket (27) onto the marked spots on the top of the track (24) so that the welded top plate on the hanger bracket (27) is facing up away from the track. Each hanger bracket (27) sits between the marked lines 3-1/2-inches apart.

d) Per Detail "E," securely tighten the side set screw on each hanger bracket (27) until tight to align the track (24) against the side of the hanger bracket (27). Do not over tighten the set screw.

NOTE: Each hanger bracket (27) comes with a set screw threaded into the side. It doesn’t matter which side. However, ensure that each hanger bracket (27) has the set screw threaded into the same side of the track (24).

e) Per Detail "E," insert eight 5/8-inch by 2-1/2-inch bolts (30) through eight 5/8-inch beam clips (34) so that the bolt heads are on top of the beam clips (34).

f) Per Detail "E," insert the bolts (30) and attached beam clips (34) through the holes on top of the welded top plate of the hanger bracket (27) so that the beam clips (34) are on top of the welded top plate of the hanger bracket (27).

g) Per Detail "E," hand tighten one 5/8-inch hex locknut (22) to each bolt (30).

h) Using a crane or forklift and lifting straps, lift the track (24 in Building Materials Description) to the bottom of the I-beam weldment (13 in Building Materials Description).

i) Use a eight-foot step ladder or man/scissor lift to reach the track (24 in Building Materials Description) and I-beam weldment (13 in Building Materials Description).

j) Per Detail "E," position the track (24) and attached components (22, 30, and 34) so that the beam clips (34) on each hanger bracket (27) are on each side of the I-beam weldment (13).

k) Per Detail "E," place the beam clips (34) on each hanger bracket (27) so that they hold onto the bottom flange of the I-beam weldment (13). Adjust the beam clips (34) as needed by tightening or loosening the locknuts (22) until the beam clips (34) sit properly on the bottom flange of the I-beam weldment (13).

l) Per Detail "E," after each beam clip (34) is positioned properly on the bottom flange of the I-beam weldment (13), securely tighten each locknut (22) to keep the beam clips (34) in place.

m) After the track (24 in Building Materials Description) has been securely tightened to the I-beam weldment (13), ensure that all beam clips (34) are installed horizontally and level within plus or minus five degrees. Then torque the 5/8-inch diameter locknuts (22) to 108 foot-pounds.

Detail "E" (Track to I-Beam Weldment)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>I-Beam Weldment</td>
</tr>
<tr>
<td>22</td>
<td>5/8-Inch Diameter Hex Locknut</td>
</tr>
<tr>
<td>24</td>
<td>Track</td>
</tr>
<tr>
<td>27</td>
<td>Hanger Bracket</td>
</tr>
<tr>
<td>30</td>
<td>5/8-Inch by 2-1/2-Inch Hex Head Bolt</td>
</tr>
<tr>
<td>34</td>
<td>Beam Clip</td>
</tr>
</tbody>
</table>
10. Final Assembly

Refer to Adjustable-Height Rolling A-Frame Assembly Drawing for Steps A Through E

a) Ensure that the track (24 in Building Materials Description) is secured properly to the I-beam weldment (13 in Building Materials Description), that the I-beam weldment is secured properly to the support legs (7 in Building Materials Description), and that the caster frame assemblies (1 and 2 in Building Materials Description) are secured properly to the support legs.

b) Confirm that all of the system’s nuts are torqued to the required specifications below prior to removing support rigging (your telescoping fork truck or crane).

<table>
<thead>
<tr>
<th>Bolt Diameter</th>
<th>Hex Nut Torque</th>
<th>Minimum Hex Locknut Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1/2 Inch</td>
<td>78 Foot-Pounds</td>
<td>51 Foot-Pounds</td>
</tr>
<tr>
<td>**5/8 Inch</td>
<td>154 Foot-Pounds</td>
<td>93 Foot-Pounds</td>
</tr>
<tr>
<td>3/4 Inch</td>
<td>257 Foot-Pounds</td>
<td>151 Foot-Pounds</td>
</tr>
<tr>
<td>7/8 Inch</td>
<td>341 Foot-Pounds</td>
<td>224 Foot-Pounds</td>
</tr>
<tr>
<td>1 Inch</td>
<td>514 Foot-Pounds</td>
<td>325 Foot-Pounds</td>
</tr>
</tbody>
</table>

NOTE: *The 1/2-inch hex nuts (5) on the caster frame assemblies’ studs should be torqued to 23 foot-pounds. **The 5/8-inch diameter locknuts (22) on the hanger assemblies (27) should be torqued to 108 foot-pounds.

c) Per Detail “F,” insert your Anchor Trolley™ (25) into the track (24). For a multiple track system, install one Anchor Trolley per track.

NOTE: The 1/2-inch by 3-1/2-inch end stop bolt, 1/2-inch diameter hex locknut, and rubber sleeve ship in hardware kits labeled 500ES (26).

d) Per Detail “F,” install the track’s end stops (26) by inserting the 1/2-inch by 3-1/2-inch bolts (26) through the holes at both ends of the track (24) and through the rubber sleeves (26).
e) Attach and torque the end stop nuts (26) until **securely tightened** against the track (24).

NOTE: The 1/2-inch hex locknuts (26) should be torqued until **securely tightened** against the track (24). Be careful not to damage the track in any way.
INTERMEDIATE BUMPER INSTALLATION (IF SUPPLIED)

NOTE: Follow the approval drawing, if provided, to prevent overloading of the track and system.

1. Using a man or scissor lift, remove an end stop from the end of the track if end stop is present.
2. Per Figure 1, slide the top plate (6) and attached components (2, 3, 4, and 5) into the track (1) and to the desired location in the track. Ensure that the rubber bumper (2) is facing the trolley.
3. Per Figure 1, insert two bolts (8) through two split lock washers (7).
4. Per Figure 1, align the holes in the bottom plate (9) with the holes in the top plate (6). Ensure that the bottom plate (9) is underneath the track (1).
5. Per Figure 1, securely tighten the bolts (8) and attached split lock washers (7) through the aligned holes in the bottom plate (9) and top plate (6) so that the bolt heads are underneath the bottom plate (9). Ensure that the split lock washers (7) are between the bolt head and the bottom of the bottom plate (9).
6. Using a torque wrench, torque 3/8-inch diameter bolts to 33 foot-pounds. Torque 1/2-inch diameter bolts to 78 foot-pounds. See the tables below.
7. Reinsert the end stop that was removed in step 1.

NOTE: Intermediate bumpers should not be used as end stops.

Figure 1

500 Series Track (P/N: 1500IB)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Track</td>
</tr>
<tr>
<td>2</td>
<td>Rubber Bumper</td>
</tr>
<tr>
<td>3</td>
<td>10-32 NC by 1-1/4-Inch Machine Screw</td>
</tr>
<tr>
<td>4</td>
<td>#10 Lock Washer</td>
</tr>
<tr>
<td>5</td>
<td>10-32 NC Nut</td>
</tr>
<tr>
<td>6</td>
<td>Top Plate</td>
</tr>
<tr>
<td>7</td>
<td>3/8-Inch Split Lock Washer</td>
</tr>
<tr>
<td>8</td>
<td>3/8-Inch by 1-Inch Hex Head Bolt</td>
</tr>
<tr>
<td>9</td>
<td>Bottom Plate</td>
</tr>
</tbody>
</table>

NOTE: For part number 1500IB, item 8 requires a 9/16-inch wrench or socket.

600, 700, and 900 Series Track (P/N: 1700IB)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Track</td>
</tr>
<tr>
<td>2</td>
<td>Rubber Bumper</td>
</tr>
<tr>
<td>3</td>
<td>10-32 NC by 1-1/4-Inch Machine Screw</td>
</tr>
<tr>
<td>4</td>
<td>#10 Lock Washer</td>
</tr>
<tr>
<td>5</td>
<td>10-32 NC Nut</td>
</tr>
<tr>
<td>6</td>
<td>Top Plate</td>
</tr>
<tr>
<td>7</td>
<td>1/2-Inch Split Lock Washer</td>
</tr>
<tr>
<td>8</td>
<td>1/2-Inch by 1-1/2-Inch Hex Head Bolt</td>
</tr>
<tr>
<td>9</td>
<td>Bottom Plate</td>
</tr>
</tbody>
</table>

NOTE: For part number 1700IB, item 8 requires a 3/4-inch wrench or socket.
SYSTEM HEIGHT ADJUSTMENT

Without Height Adjustment Kit

NOTE: Never stand under the system when adjusting the system height, caster frame width, or while disassembling the system.

a) Secure the Anchor Trolley™ to the I-beam weldment in the center of the track.

b) Using a crane or forklift and lifting straps, slightly lift the I-beam weldment to relieve the weight from the hitch pins in the support legs.

NOTE: Ensure not to damage the track in any way.

c) Remove the attached linch pins from the hitch pins.

d) Remove the hitch pins from the support leg.

e) Slowly pull or push the bottom of the support leg to lengthen or shorten the support leg.

NOTE: Support legs will not adjust at the same pace.

f) When the support leg reaches the desired height, align the holes in the top and bottom of the support leg.

g) Per Figure 2, reinsert the hitch pins through the aligned holes in the outsider support leg outer and inner tubes. The hitch pins should be inserted into the two holes in the outside support leg outer tube.

h) Reinsert the attached linch pins through the hitch pins.

i) Repeat steps c) through h) to adjust the remaining support legs.

j) Ensure that each support leg has the same number of holes visible in the outside support leg inner tube and two hitch pins in the outside support leg outer tube as per Figure 2.

k) After you have reinserted two hitch and attached linch pins into each support leg and have ensured that each support leg has the same number of holes visible in the outside support leg inner tube, you can lower the I-beam weldment and remove the crane or forklift and lifting straps.
With Height Adjustment Kit (Part Number THA-1T)

NOTE: Never stand under the system when adjusting the system height, caster frame width, or while disassembling the system.

a) Secure the Anchor Trolley™ to the I-beam weldment in the center of the track.

b) Remove the bottom hitch and attached linch pin from one support leg.

c) Align the hole in the bottom of the adjustment kit with the highest exposed inner tube hole. Refer to Figure 3 for proper height adjustment kit orientation.

d) Insert the removed hitch and attached linch pin through the aligned hole in the adjustment kit and support leg.

e) Per Figure 4, wrap the shorter cable with attached clip at the top of the height adjustment kit around the support leg.
f) Insert the shorter cable into the attached clip.

g) Per Figure 4, attach the hook to the welded lug on the outside support leg. Refer to Figure 3 to ensure that the correct lug is used.

h) Crank the handle until the winch cable is tensioned.

i) Remove the remaining hitch and attached linch pin from the support leg.

j) Slowly crank the handle up or down to lengthen or shorten the support leg.

 NOTE: Never adjust a support leg more than two holes (one foot) at a time to prevent system binding. After a support leg has been adjusted two holes, the height adjustment kit must be repositioned before adjusting each support leg two additional holes (one foot). Repeat this process until the desired height is reached.

k) After adjusting the support leg up to two holes (one foot) at a time, reinset the hitch and attached linch pin through the bottom hole of the outside support leg outer tube. See Figure 2 on page 18.

l) Repeat steps b) through k) to adjust the remaining support legs.

m) Ensure that each support leg has the same number of holes visible in the outside support leg inner tube. See Figure 2 on page 18.

n) Remove each height adjustment kit.

o) Reinsert the hitch pins so that both hitch pins are in the two holes in the outside support leg outer tube. See Figure 2 on page 18.

p) Reinsert the attached linch pins through the hitch pins.

q) Ensure that each support leg has two hitch and attached linch pins through the two holes in the outside support leg outer tube. See Figure 2 on page 18.

WARNING

WHILE IN USE, THE CASTER FRAME WIDTH MUST BE AT MAXIMUM DISTANCE TO PREVENT SYSTEM FROM FALLING OVER DURING A FALL EVENT.

WHILE IN USE, THE SUPPORT LEGS MUST BE AT MAXIMUM SPAN DISTANCE. NO CANTILEVER LOADING IS ALLOWED ON THIS SYSTEM.

CASTER FRAME WIDTH ADJUSTMENT

NOTE: Never stand under the system when adjusting the system height, caster frame width, or while disassembling the system.

a) Using a crane or forklift and lifting straps, slightly lift the I-beam weldment to relieve the weight from the hitch pins in the caster frame assemblies.

 NOTE: Ensure not to damage the track in any way.

b) Per Figure 5, remove the hitch and attached linch pins from a caster frame assembly.
NOTE: Caster frame assemblies contain an assembled cable assembly inside the inner and outer caster frame assembly tubes to prevent overspreading of the caster frame assemblies. Do not remove this cable or any hardware attached to the cable assembly.

c) Per Figure 5, push or pull the caster frame assembly inner tube to the desired width.

d) Per Figure 5, align the holes in the caster frame assembly inner and outer tubes.

e) Per Figure 5, reinsert the hitch pin through the aligned holes in the caster frame assembly inner and outer tubes.

f) Per Figure 5, reinsert the linch pin through the hitch pin.

g) Repeat steps b) through f) to adjust the remaining caster frame assembly.

h) Per Figure 5, ensure that each caster frame assembly has the same number of holes visible on the caster frame assembly inner tubes.

i) Ensure that both caster frame assemblies have properly secured hitch and linch pins.

j) After you have reinserted the hitch and attached linch pins into each support leg and have ensured that each caster frame assembly has the same number of holes visible in the caster frame assembly inner tube, you can lower the I-beam weldment and remove the crane or forklift and lifting straps.
OPERATING INSTRUCTIONS

1. Make sure a written fall protection plan is in place.
2. Confirm that the system’s support legs are plumb and the system is being used on a firm, level surface. NEVER place system near a ledge.
3. Position the Adjustable-Height Rolling A-Frame system with its track(s) as close as possible to the center of your work area.
4. NEVER exceed 10 degrees off-plumb (off-center) loading.
5. All caster brakes must be engaged while system is in use.
6. This system must be used with an ANSI-rated self-retracting lanyard (SRL), per your training and the instructions that came with your equipment. If not already connected, attach your SRL to the system’s Anchor Trolley™ connector using an approved offset-D locking carabiner. Don your full-body safety harness and then connect the SRL’s snap hook to your harness’s D-ring.
7. Push or pull the Adjustable-Height Rolling A-Frame system by hand only.
8. While in use, the caster frame width must be at maximum distance and the support legs must be at maximum span distance. No cantilever loading is allowed on this system.
9. Never adjust system height or caster frame width while system is in use.

MAINTENANCE

1. Visually inspect the system before each use and fully inspect the system after a fall event and annually. Refer to the ADJUSTABLE-HEIGHT ROLLING A-FRAME INSPECTION CHECKLISTS in the next section of this manual for checklists for Adjustable-Height Rolling A-Frame Anchor Track™ System and Annual Anchor Track™ System.
2. Grease the caster assemblies’ swiveling section and axles to ensure proper lubrication at least monthly with low melting point lithium grease, which can be purchased at any automotive store.
3. For a full list of Caster Inspection Points, see the Adjustable-Height Rolling A-Frame Anchor Track™ System checklist.
4. If the system fails ANY of the inspection points on any of the inspection checklists, immediately remove the system from service and call Rigid Lifelines® at 800-869-2080 for instructions.
5. During the first month after a new installation, a weekly inspection of the system should be performed using the Annual Anchor Track™ System Inspection Checklist. It is important to note that every system application and use will be different, meaning some conditions of use will require more frequent inspection. Examples of such conditions include two or three shift operations or working with or near corrosive chemicals or elements.
6. Refer to the Anchor Trolley™ User Instruction Manual (Manual 103-0054), which comes packaged with the Anchor Trolley, for its trolley inspection checklists.
7. Download and print additional blank inspection checklists from the literature tab at RigidLifelines.com.
LABELING

The letters correspond to the letters on the Adjustable-Height Rolling A-Frame Label Placement Drawing. All labeling must be legible and attached to the Adjustable-Height Rolling A-Frame system. For replacement labels, contact Rigid Lifelines®.

RIGID LIFELINES LABEL PLACEMENT DISCLAIMER

If system is shipped unpainted or without properly secured labels, proper label placement is the sole responsibility of the end user. Follow the Label Placement Drawing shipped with this user manual to place labels correctly. Rigid Lifelines cannot be held liable for any damage or injury resulting from omitted or improper label placement.

Note 1:
- Label 53-0549 “A” should be centered just above the top hole on the outside support leg on both sides.
- Label 53-0206 “B” should be centered on both sides of the I-beam weldment.
- Label 53-0047 “C” should be placed on both ends of the track on both sides.
- Label 53-0023 “D” should be centered just above the top hole on the outside support leg opposite to label “A” on both sides.
- Label 53-0550 “F” should be centered just above label “A” on both sides.
- Label 53-0551 “G” should be centered on each caster frame assembly outer tube above the hole for the linch pin.
- Label 53-0552 “H” should be centered just above label “D” on both sides.
- Label 53-0039 “I,” when adjusted to maximum height, should be centered on both sides on top of each outside support leg above the top hole.

Note 2:
- Label “E” should be centered on the track on both sides and is P/N 53-0535 for one person systems, 53-0536 for two person systems, and 53-0359 for three to eight person systems, along with 53-0413 through 53-0418 respectively. Labels P/N 53-0413 through 53-0418 are the capacity numbers three through eight for the Anchor Track Label and should be placed to the right of the line following “Rigid Lifelines.”
ADJUSTABLE-HEIGHT ROLLING A-FRAME ANCHOR TRACK™
SYSTEM INSPECTION CHECKLIST

Before Each Use

Inspector Name: __
Date: __
System Number: __
Model: ___

<table>
<thead>
<tr>
<th>INSPECTION POINTS</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Test the swiveling connector(s) on each trolley to verify that each trolley rotates and swivels freely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Verify that the trolley(s) can easily and smoothly roll the full length of the runway track(s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Check all system welds for cracks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Check system components for corrosion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Check system components for bent or damaged areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Check support structure for stability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caster Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Inspect casters for visible signs of damage or excessive wear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Check each caster unit for potentially concealed damage.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Visually check that all caster studs are present and tight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ensure that the caster’s axles are properly secured.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Ensure that the casters’ brakes and swivel locks perform properly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Ensure that the caster brakes are making contact with the caster material for maximum effectiveness.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2018. All Rights Reserved. All specifications and product designs subject to change without prior notice.
AFTER A FALL EVENT AND ANNUAL ANCHOR TRACK™ SYSTEM INSPECTION CHECKLIST

Inspector Name: __

Date: ___

System Number: ___

Model: ___

INSPECTION POINTS

<table>
<thead>
<tr>
<th>Inspection Point</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Check that the beam clamps are installed horizontal within + / - five degrees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Check that end stop bolts are present and have locknuts installed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Using a torque wrench, check that all bolts are present and torqued to values shown on Assembly Drawing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Check that splices, if supplied, are centered on track joints.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Verify that capacity labels are present, attached, and legible. See Label Placement Drawing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Verify that the number of trolleys matches the value on the capacity label.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Verify that the fall arrest system is not being used for material handling.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Check the track for levelness within + / - 1/4 inches per 20 feet of track.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Check the track flanges. Track flanges cannot be bent downward more than five degrees.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Check the track thickness. Track thickness cannot be worn more than 10 percent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Check all system welds for cracks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Check system components for corrosion and bent or damaged areas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Check that all wheel studs, if supplied, are torqued to value shown on Assembly Drawing. Note that these 1/2-inch wheel studs have a different torque value than the system's other 1/2-inch bolts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Verify trolley can traverse entire length of track without snags.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Check trolley for visibly bent swiveling connector, broken welds, or excessive wear or corrosion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Test the operation of the trolley's swiveling connector and verify that it can rotate freely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Test the operation of the trolley and verify the wheels rotate freely.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Check system components for loose components.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Check system components for loose or missing fasteners.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Check system support structure for stability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Verify that hanger assemblies are installed properly and fasteners are torqued to proper values.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Check that the support arms pivot bolts, if supplied, are properly installed and tightened.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Check system for unauthorized modifications. Only Rigid Lifelines can authorize modifications. Remove system from service if it is modified in any way.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©2018. All Rights Reserved. All specifications and product designs subject to change without prior notice.
PRODUCT WARRANTY COVERAGE

Rigid Lifelines® warrants its products to be free from defects in material and workmanship, as follows:

- **Ten Years:** Engineered Track Equipment, Wearable End Truck Wheels, and Anchor Trolley™ Wheels and Teeth
- **Two Years:** Paint and Finishes
- **One Year:** Motorized Products and Drive Components, Soft Goods, Devices, Connectors, and Accessories

Ten-Year Warranty Coverage:
- Defects in equipment material and workmanship of manual track systems and equipment
- Wearable parts (End truck wheels and Anchor Trolley wheels and teeth)

Rigid Lifelines warrants its manual Anchor Track™ systems and equipment to be free from defects in material and workmanship for a period of ten (10) years or 20,000 hours, commencing on the date of shipment to the first retail purchaser. This warranty extends to non-wearable parts only, with the exception of the wheels supplied on end trucks and Anchor Trolley wheels and teeth.

Two-Year Warranty Coverage:
- Paint coatings and finishes

Rigid Lifelines warrants its paint and finishes for a period of two (2) years. Warranty claims related to coatings must be accompanied by documentation of the product’s application and environmental conditions from time of delivery to time of claim.

One-Year Warranty Coverage:
- Defects in equipment and workmanship of motorized systems and equipment
- Defects in soft goods, devices, connectors, and accessories

Rigid Lifelines warrants motorized equipment to be free from defects in material and workmanship for a period of one (1) year or 2,000 hours, commencing on the date of shipment to the first retail purchaser. Rigid Lifelines also warrants fall protection soft goods, devices, connectors, and accessories to be free from defects in material and workmanship for a period of one (1) year, commencing on the date of shipment to the first retail purchaser.

Warranty Terms and Conditions:
Rigid Lifelines’ obligation under this warranty is limited to the replacement or repair of Rigid Lifelines products at the factory or separate approved location. Other than the above mentioned warranty, Rigid Lifelines will not honor any other warranties—whether expressed, implied, or statutory—and disclaims any warranties of merchantability or fitness for a particular purpose. Rigid Lifelines has the right to reject any warranty claim due to harsh and/or inappropriate environmental conditions.
Rigid Lifelines® is Not Liable for:

- Indirect, incidental, or consequential damages (lost profits, operating costs, production loss, or travel expenses)
- Components or accessories not manufactured by Rigid Lifelines (with the exception of soft goods components and accessories sold and warranted by Rigid Lifelines. For such components and accessories, the warranty shall be determined by the terms and conditions of any warranty provided by the manufacturer of such components and accessories.)
- Defective equipment or system failure due to misuse, negligence, improper installation, or maintenance
- Equipment that has been used in excess of its rated capacity or beyond its service factors
- Equipment that has been altered without Rigid Lifelines written authorization
- Damage incurred by freight carriers
- Loss, injury, or damage to person or property resulting from failure of defective material or equipment operation
- This warranty is void for any product that is designed to deform or absorb energy during a fall event and needs to be replaced after a fall event has occurred

Reimbursement Disclaimer:

- Written notice of any claimed defect must be given to Rigid Lifelines within ninety (90) days of shipment
- All requests for reimbursement must be accompanied by proper documentation
- Reimbursement is provided in the form of a credit unless otherwise approved by Rigid Lifelines management
- Reimbursement for labor will be provided at a maximum rate of $75 per hour
- All reimbursement is subject to approval by Rigid Lifelines management

Service Policy

1. Obtain as much information as possible concerning the problem through personal observation by yourself or other authorized personnel familiar with the job and equipment: include model, serial and/or part numbers, voltages, speeds, and any other special identifying features. Be prepared to discuss the situation in detail.

2. All authorized labor charges will be based on straight time. Hourly rates, estimated man hours, and not to exceed total dollar amount required for corrections are to be agreed upon before authorization is given. There will be no allowances for overtime except in dire emergencies and then only with prior approval.

3. A verbal agreement may be reached immediately on both the method of correction and the approximate cost. A warranty authorization number will be assigned for the specific incident. A confirming written authorization will be forwarded to the distributor.

4. The distributor must send an itemized invoice, showing our release number or invoice number and warranty authorization number after authorized corrections have been made. A credit memo will be issued by accounting after the invoice has been received and approved. Warranty charges ARE NOT to be deducted from outstanding open account invoices under any circumstances.

5. Any field corrections made prior to an authorization by Rigid Lifelines will not be accepted as a warranty charge or the responsibility of Rigid Lifelines. Any modification to the equipment made without prior approval of the seller will void all warranties. A verbal authorization for modification may be obtained, in which event a warranty authorization number will be assigned for the specific modification. A confirming written authorization will be forwarded to the distributor.
ABOUT RIGID LIFELINES®

OUR MISSION:

Rigid Lifelines is driven by passion for providing our customers with quality, user-friendly solutions to keep workers safer and more productive at elevation.

OUR COMMITMENT

Rigid Lifelines professionals are dedicated to designing and manufacturing a variety of fall protection systems that meet or exceed OSHA requirements and ANSI Z359 code. Our team of engineers and safety professionals combine over 30 years of experience in the fall protection industry to manufacture fall protection systems that utilize the most advanced technology and designs.

Rigid Lifelines production facilities are certified under the ISO 9001:2008 Quality Management System to provide superior quality products. And every welder at Rigid Lifelines is certified to handle steel (D1.1) and aluminum (D1.2) in accordance with the rigorous requirements and lab testing established by the American Welders Society (AWS).

Rigid Lifelines engineers are involved with ANSI Z359 Technical Review Committee and the ANSI Z359.19 Rigid Horizontal Rail Standard. We also participate with the Safety & Health Technology Committee of the Association of Iron & Steel Technology. Our involvement allows us to keep a constant pulse on the trends in both industry practice and government regulation.

OUR PRODUCTION:

All of our systems are designed and manufactured in the United States of America. We have production facilities in Las Vegas, Nevada, and at our headquarters in Morgantown, Pennsylvania.
NOTE 2:
LABEL "E" SHOULD BE CENTERED ON THE TRACK ON BOTH SIDES AND IS P/N 53-0535 FOR ONE PERSON SYSTEMS, 53-0536 FOR TWO PERSON SYSTEMS, AND 53-0359 FOR THREE TO EIGHT PERSON SYSTEMS, ALONG WITH 53-0413 THROUGH 53-0418 RESPECTIVELY. LABELS P/N 53-0413 THROUGH 53-0418 ARE THE CAPACITY NUMBERS THREE THROUGH EIGHT FOR THE ANCHOR TRACK LABEL AND SHOULD BE PLACED TO THE RIGHT OF THE LINE FOLLOWING "RIGID LIFELINES."

NOTE 1:
LABEL 53-0549 "A" SHOULD BE CENTERED JUST ABOVE THE TOP HOLE ON THE OUTSIDE SUPPORT LEG ON BOTH SIDES.
LABEL 53-0206 "B" SHOULD BE CENTERED ON BOTH SIDES OF THE I-BEAM WELDMENT.
LABEL 53-0047 "C" SHOULD BE PLACED ON BOTH ENDS OF THE TRACK ON BOTH SIDES.
LABEL 53-0023 "D" SHOULD BE CENTERED JUST ABOVE THE TOP HOLE ON THE OUTSIDE SUPPORT LEG OPPOSITE TO LABEL "A" ON BOTH SIDES.
LABEL 53-0550 "F" SHOULD BE CENTERED JUST ABOVE LABEL "A" ON BOTH SIDES.
LABEL 53-0551 "G" SHOULD BE CENTERED ON EACH CASTER FRAME ASSEMBLY OUTER TUBE ABOVE THE HOLE FOR THE LINCH PIN.
LABEL 53-0552 "H" SHOULD BE CENTERED JUST ABOVE LABEL "D" ON BOTH SIDES.
LABEL 53-0039 "I" WHEN ADJUSTED TO MAXIMUM HEIGHT, SHOULD BE CENTERED ON BOTH SIDES ON TOP OF EACH OUTSIDE SUPPORT LEG ABOVE THE TOP HOLE.

THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF RIGID LIFELINES. ANY REPRODUCTION IN PART OR WHOLE WITHOUT THE WRITTEN PERMISSION OF RIGID LIFELINES IS PROHIBITED.